Osteoporosis in Premenopause, Pregnancy and Lactation

Jacqueline Center

Garvan Institute of Medical Research,
St Vincent’s Hospital and
University of NSW, Sydney
- Mineral metabolism during pregnancy, breast feeding and weaning
- Pregnancy associated osteoporosis
- Transient osteoporosis of the hip
- Premenopausal osteoporosis
Nutritional demands of pregnancy and lactation

- Fetus contains 30g Ca, 20g phosphorus, 0.8g Mg
- 80% of mineral accretion in third trimester
- Ca transfer at 300-350mg/d in last 6 wks

- Neonate - 200mg ca per day 0-6 mths, 120 mg/d 6-12 mths

- 25% dietary calcium is absorbed

- Physiological adaptation
 - pregnancy - ↑ intestinal calcium absorption
 - lactation - ↑ bone resorption
Metabolic changes during pregnancy

- **Total Ca (mmol/L)**
 - 2.7
 - 2.1

- **Ionized Ca**
 - 1.6
 - 0.9

- **Phosphorus (mmol/L)**
 - 1.7
 - 0.9

- **PTH (pmol/L)**
 - 5.0
 - 0.0

- **Calcitriol (pmol/L)**
 - 300
 - 0.0

- **Calcitonin (pmol/L)**
 - 20.0
 - 0.0

- **PT/HP (pmol/L)**
 - 5.0
 - 0.0

- **Estradiol (nmol/L)**
 - 100.0
 - 0.0

- **Prolactin (ng/mL)**
 - 150.0
 - 0.0

- **Trimesters of Pregnancy**

Kovacs Physiol Rev 2016
Intestinal Calcium absorption

- Active transport duodenum and prox jejunum, passive transport distal jejunum and ileum
- ↑Intestinal ca absorption 2-fold from 1st trimester partly ↑calcitriol (?PL placental lactogen, GH)
- ↓PTH demonstrates +ve ca balance

Renal calcium handling

- ↑Hypercalciuria (absorptive - ↑24 hr not spot fasting ca/cr)
- Pre-ecclampsia assoc with hypocalciuria and ↓calcitriol ?altered renal handling, 25-OHD no effect, Ca suppl if ↓dietary ca
Skeletal and mineral metabolism

- +ve ca balance by mid preg
- ↑Bone turnover esp 3rd trimester with ↑bone resorption
- Small (or no) loss in BMD - large cohorts only
- In general no adverse effect of parity on bone health

Low dietary ca during pregnancy

- ↑PTH, bone loss and risk of pregnancy assoc OP
- Maternal hypocalcemia → fetal hyperparathyroidism, OP and fracture
- Lowest quintile ↑risk pre ecclampsia, ameliorated with ca suppl
Skeletal physiology during lactation

- Average ca loss ≈200 mg/d (0-6 mths)
- ↓Intestinal ca absorption to normal
- ↑Renal ca reabsorption (PTHrP)
- Majority ca mobilised from bone
 - osteoclast-mediated bone resorption
 - osteocytic osteolysis
- PTHrP and low E2 regulate bone resorption

Kovacs Physiol Rev 2016
Changes during lactation

Kovacs Physiol Rev 2016
Skeleton and lactation

- Bone turnover markers increase
- ↓ BMD 5-10% LS (up to 20%), 3-4% hips
- ↑ bone loss with longer lactation
- Ca supplementation does not reduce bone loss
- Resumption of menses does not stop ongoing bone loss

- Osteoclast bone resorption mainly trabecular bone
- Osteocytic osteolysis cortical and trabecular bone

- 6 mths GnRH → E2 def ↓LS BMD 2-4%, ↔hip BMD, ↑ Ca/Cr suggests low E2 permissive role, PTHrP major player
Bone resorption and osteocytic osteolysis

Quiescent

Lactation with bone resorption & osteocytic osteolysis

Post weaning with restoration of bone

Evidence for osteocytic osteolysis mainly from animal models

Kovacs Physiol Rev 2016
E2 def only
• ↓ bone loss
• ↑ renal ca exc
• Ongoing bone loss despite menses return

Kovacs Physiol Rev 2016
Breast, brain, bone and lactation

Suckling & PL inhibit GnRH→↓E2, prog → PTHrP from breast ↓E2 and PTHrP → bone loss
Ca actively pumped into breast milk

??oxytocin, calcitonin

Kovacs OI 2015
Post weaning and bone recovery

- ↑bone turnover - formation > resorption
- Bone mass generally returns to normal by 12 mths (DXA)
- HR-pQCT - recovery of microarchitecture, ? deficits with longer lactation (limited data)
- ? increased cross-sectional femur diameter
- Neutral effect on BMD and fracture risk - epidemiological studies
- Adolescent preg no adverse impact
- Recovery time relates to lactation time
- ↑ ca intake and wt bearing exercise may enhance BMD

Calcium and bone homeostasis

Kovacs Physiol Rev 2016
Osteoporosis in Pregnancy

- 4-8/1,000,000 pregnancies
- Vertebral fractures most common – 3rd trimester
- Gen 1st preg, mostly does not recur if underlying abn treated
- Causes
 - Pre-existing skeletal fragility
 - ↑ skeletal resorption 3rd trimester if ↓Ca transferred to fetus
 (↓dietary ca abs – ↓intake, malabs, ↓vit D)
 - Additional factors- ↑wt bearing, lordosis, anorexia, genetic
 low bone mass, renal ca leak, POI etc

Kovacs Osteoporos Int 2015, Sanz-Salvadore EJE 2015
Pregnancy associated osteoporosis

102 PAO matched case-control study, German ref centre
88% fractures, mean 3.3, commonest T/L spine
↑childhood dental problems, ↑2x severe diseases in preg with immobilisation, ↓sport
Transient Osteoporosis of the Hip

- 3rd trimester
- Pain, limp or # hip
- Can be bilateral
- Also in men (men>women 28:3)
- Fem head/neck radiolucent, low BMD ?artifact
- MRI bone marrow oedema
- Resolves in months
- Aetiology unclear
 - ? femoral venous stasis, fetal pressure on obturator nerve, relative immobility
- Not systemic bone resorption
- Any pregnancy
- Other hip during pregnancy or non pregnancy

Hadji Arch Osteoporos 2017
Management of fracture in pregnancy/lactation

- Limited evidence
- ? underlying cause
- Optimise calcium (1200mg/d) and vitamin D
- Wt bearing/resistance exercise for mobility, avoid heavy lifting
- Vertebral # generally don’t recur in subsequent pregnancies
- ↑Bone density/strength post weaning to pre-pregnancy level
- Wean early
- Pharmacological therapy only judiciously, gen not
- BP and Dmab cross placenta
- RV of 78 BP prior to/during preg, 7 pre/during lactation¹
 - no serious fetal adverse effect
 - transient hypoca (high dose), ↓gestational age, ↓birth wt

Stathopoulos P. Hormones 2011
BMD and pregnancy associated osteoporosis

13 women
1-8 PAO spine #,
9-13 TOH
Premenopause and osteoporosis

BMD testing
- Z-scores <2.0, “Below expected for age”
- Avoid “osteopenia” in otherwise healthy
- Most cross-sectional studies
- ↓↓ fracture risk
- No longitudinal data on short term # risk
- Risks/benefits of Rx unclear
- # premenop → ↑risk post menop #
 - RR1.7\(^1\)
 - 40-90% assoc with secondary cause

\(^1\)Wu F. Arch Int Med 2002, Cohen A. Curr Osteoporos Rep 2013
Idiopathic Osteoporosis in Premenopause

- Low trauma fracture with no secondary cause
- FHx common
- Heterogenous
- Bone biopsy and hormonal data suggest low and high bone remodeling
 - Low bone turnover - ↑microarchitectural deficits, ↑IGF-1
 - High bone turnover - idiopathic hypercalciuria

Cohen JCEM 2012
Bone architecture - IOP and low BMD

104 women - 45 IOP with #, 19 ILBMD, 40 controls

Subjects - ↓wt, ↓BMI, similar BTM, E2, IGF-1, vit D, ↑PTH, ↑TRAP5b

HR-pQCT – microarchitecture disruption, ↓stiffness distal radius, tibia

IOP and ILBMD indistinguishable

Iliac crest biopsy - ↓bone vol, trab thickness and connectivity, cortical width

Lowest tertile of bone formation (BFR/BV) worse parameters, ↑IGF-1

?osteoblast dysfunction with IGF-1 resistance

Highest bone turnover trend to ↑1,25-(OH)2 D, urinary ca, PTH

Cohen A. JCEM 2012
Management of premenopausal OP

- Low BMD with no fracture and no underlying cause
- Lifestyle and observe
- Rpt BMD 1-2 yrs to ensure stability

- Known secondary cause
- Rx cause if possible
- If ongoing secondary cause, fractures, bone loss, consider antiresorptives
- E2 replacement if E2 deficient (ineffective in AN)
- BP, TPDT on a case-by-case basis
OCP and HT in premenopause

<table>
<thead>
<tr>
<th></th>
<th>Healthy premenopausal</th>
<th>Oligo/amenorrhoeic premenopausal</th>
<th>Anorexic premenopausal</th>
<th>Perimenopausal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive effect</td>
<td></td>
<td>2 RCTs</td>
<td>5 Cohort</td>
<td>1 RCT</td>
</tr>
<tr>
<td></td>
<td>3 Cohort</td>
<td></td>
<td></td>
<td>4 Cohort</td>
</tr>
<tr>
<td></td>
<td>7 X-sectional</td>
<td></td>
<td></td>
<td>3 X-sectional</td>
</tr>
<tr>
<td>Subtotal</td>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>No effect</td>
<td>4 RCTs</td>
<td>1 RCT</td>
<td>3 RCTs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 Cohort</td>
<td>1 Cohort</td>
<td>1 Cohort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 X-sectional</td>
<td></td>
<td>2 X-sectional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Case series</td>
<td></td>
<td>1 Case series</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>29</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Negative effect</td>
<td></td>
<td></td>
<td>3 RCTs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Cohort</td>
<td>1 Cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 X-sectional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Case report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>10</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

RCT, Randomised controlled trial; X-sectional, cross sectional.
Teriparatide in IOP

21 women with # or low BMD

4/21 min BMD↑
Lowest bone turnover
Biopsy parameters ↑

Cohen JCEM 2013
Bone change after TPDT cessation

39 ± 6 yrs

10/15 women >3% loss LS
Incl 3/5 women on OCP
Age > 40yrs
Greatest ↑ in BMD

Cohen JCEM 2015
Premenopause, Pregnancy and Bone Health

- Pregnancy not detrimental for bone health
- Adequate calcium intake important due to high fetal demands
 - ↑calcium absorption during pregnancy
 - ↑bone resorption during lactation
 - recovery post weaning
- Pregnancy associated osteoporosis rare, doesn’t recur
- Osteoporosis in premenopause
 - exclude secondary cause
 - unless ongoing fracture, antiresorptive treatment rarely required