Update in Pituitary Radiotherapy and Radiosurgery

A/Prof Matthew Foote – Radiation Oncologist
Co-Director Gamma Knife Centre of Queensland
Princess Alexandra Hospital
• Radiotherapy – long history in management of pituitary tumours.

Hirsch – 1911 – Radium implant

Harvard Cyclotron 1960’s
Evolution of Techniques – 2D -3D CRT

- Use of CT for planning treatment
- 3D conformal radiotherapy (3D CRT)
- Improve therapeutic ratio
Development of **Stereotactic** approaches
Application from Neurosurgery

Precision in delivery of radiotherapy
Radiosurgery Vs Radiotherapy

- Single high dose of radiation (12-150Gy)
- Tissue ablation/destruction
- Requires defined ‘target’
- Typically for targets less than 3-4cm

- Multiple small doses of radiation (1.8-3.0Gy)
- Mitotic cell death (DNA damage) in dividing cells
- Often used with margins to treat regions
- Can be used for large volumes
Stereotactic Radiosurgery

- Stereotactic = precision
 - Minimally invasive frame

- Radiosurgery
 - Ablative/destructive doses of radiation
Pituitary stereotactic radiotherapy - SRS

• Stereotactic Radiosurgery
 – Ablative doses
 – Non-functioning 12-18 Gy
 – Functioning 18-28 Gy
Fractionated Stereotactic Radiotherapy - FSRT

- Fractionated Stereotactic (daily treatments)
 - Non-functioning (45-54 Gy in 25-30 #)
 - Functioning (50.4-54 Gy in 28-30 #)
 - Very tight margins – decreased dose to normal structures
Radiosurgery Units
Radiotherapy - Non-functioning Pituitary Adenomas

- Very effective to control tumour mass
 - **Largely residual disease post-op**
 - Medically inoperable/surgical high risk with growing tumour
 - Invasive recurrent tumours

- Safe to follow patients with small residual – location dependent
SRS Non-functioning Pituitary Adenomas

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>GK/LINAC</th>
<th>No of patients (n)</th>
<th>Median F/U</th>
<th>Local control [%]</th>
<th>Median marginal dose [Gy]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martinez</td>
<td>1998</td>
<td>GK</td>
<td>14</td>
<td>36</td>
<td>100</td>
<td>10–35</td>
</tr>
<tr>
<td>Lim</td>
<td>1998</td>
<td>GK</td>
<td>22</td>
<td>26.3</td>
<td>92.5</td>
<td>25</td>
</tr>
<tr>
<td>Mitsumori</td>
<td>1998</td>
<td>LINAC</td>
<td>7</td>
<td>47</td>
<td>100 at 1 year</td>
<td>15</td>
</tr>
<tr>
<td>Pan</td>
<td>1998</td>
<td>GK</td>
<td>17</td>
<td>29</td>
<td>95</td>
<td>15.8</td>
</tr>
<tr>
<td>Witt</td>
<td>1998</td>
<td>GK</td>
<td>24</td>
<td>32</td>
<td>94</td>
<td>19</td>
</tr>
<tr>
<td>Yoon</td>
<td>1998</td>
<td>LINAC</td>
<td>8</td>
<td>49</td>
<td>96</td>
<td>17</td>
</tr>
<tr>
<td>Ikeda</td>
<td>1998</td>
<td>GK</td>
<td>13</td>
<td>45</td>
<td>100</td>
<td>25–60</td>
</tr>
<tr>
<td>Mokry</td>
<td>1999</td>
<td>GK</td>
<td>31</td>
<td>20.7</td>
<td>98</td>
<td>13.8</td>
</tr>
<tr>
<td>Inoue</td>
<td>1999</td>
<td>GK</td>
<td>18</td>
<td>24</td>
<td>94</td>
<td>20</td>
</tr>
<tr>
<td>Shin</td>
<td>2000</td>
<td>GK</td>
<td>3</td>
<td>18.7</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>Izawa</td>
<td>2000</td>
<td>GK</td>
<td>23</td>
<td>28</td>
<td>95</td>
<td>22</td>
</tr>
<tr>
<td>Feigl</td>
<td>2002</td>
<td>GK</td>
<td>61</td>
<td>55</td>
<td>94</td>
<td>15</td>
</tr>
<tr>
<td>Sheean</td>
<td>2002</td>
<td>GK</td>
<td>42</td>
<td>31^</td>
<td>1</td>
<td>16.2</td>
</tr>
<tr>
<td>Wowra</td>
<td>2002</td>
<td>GK</td>
<td>45</td>
<td>55</td>
<td>93 at 3 years</td>
<td>16</td>
</tr>
<tr>
<td>Petrovich</td>
<td>2003</td>
<td>GK</td>
<td>56</td>
<td>36</td>
<td>94 at 3 years</td>
<td>15</td>
</tr>
<tr>
<td>Pollack</td>
<td>2003</td>
<td>GK</td>
<td>33</td>
<td>43</td>
<td>97 at 5 years</td>
<td>16</td>
</tr>
<tr>
<td>Muramatsu</td>
<td>2003</td>
<td>LINAC</td>
<td>8</td>
<td>30</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>losa</td>
<td>2004</td>
<td>GK</td>
<td>52</td>
<td>41^</td>
<td>88 at 5 years</td>
<td>16.6</td>
</tr>
<tr>
<td>Iwai</td>
<td>2005</td>
<td>GK</td>
<td>34/31^</td>
<td>60</td>
<td>93 at 5 years</td>
<td>14</td>
</tr>
<tr>
<td>Mingione</td>
<td>2006</td>
<td>GK</td>
<td>100</td>
<td>45^</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Voges</td>
<td>2006</td>
<td>LINAC</td>
<td>37</td>
<td>56.6</td>
<td>96.5</td>
<td>13.4</td>
</tr>
</tbody>
</table>
Non-functioning Pituitary Adenomas – SRS OR FSRT

- Volume dependent (< 5cc for SRS)
 - Planned debulk and SRS

- Proximity to Optic structures

- Recurrent/residual disease that is multifocal or *invasive*

- Histology dependent
 - Atypical (Ki-67)

May be difference in risk profile

- During treatment - fatigue
- Intermediate – fatigue and neurocognitive
- Late – optics/pituitary/CVA
Early Vs Delayed SRS – Non-functioning

- Early postoperative SRS treatment (STR)
 - decrease the rate of tumour progression (from time of SRS)
 - Reduced risk of subsequent endocrinopathy
 - Consider if growth may increase risk of SRS (2-3mm optics)

- Safe to follow patients with small residual
 - Older pt with small residual
 - panhypopit
• Larger number of patients (> 500 patients in literature)

• Dominated by GK with a few LINAC

• Range of dose 16Gy – 28 Gy single fraction

• Tumour control 90-100%

• Endocrine remission 60 – 80 %

2 Groups – target OR fossa
Latency of normalisation of UFC
Particularly important in Cushings

• GK
 – Median 1.5 yrs (ongoing to 5 yr)

• FSRT
 – Usually 2-3 yrs (ongoing to 10 yr)

SRS for Functioning Pituitary Adenomas - Acromegaly

- GK – residual disease (cavernous sinus) post surgery
 - Intolerant/resistant to somatostatin analogue
 - Surgically high risk

- Aims of radiotherapy
 - Attain biochemical control (IGF-1 level) and cessation of medical therapy
 - Control tumour mass
 - Preserve pituitary function with minimal side-effects

- Role to prevent long term use of GH antagonists
 - Cost and patient preference
 - Balanced against risk of new pituitary dysfunction
GK in Acromegaly

• Radiosurgery
 – Min covering dose of 20 Gy (aim 24-26Gy)
 – Treat to 24-26Gy if safe to do so
 – 120-150 Gy (fractionated)

Biochemical Remission: ~ 60-70%
Mean time to achieve remission: ~ 2-3 years
Dependent on PreXRT IGF-1 levels
Tumour Control: 90-100%
SRS outcome similar for both densely granulated and sparsely granulated

Which is better for Functioning Disease – SRS Vs FSRT

- BOTH
 - Similar biochemical control
 - Similar tumour control

- Side-effects
 - Risk of new pituitary dysfunction
 - Proximity to optic structures
Cost effectiveness of Radiosurgery (GK) Acromegaly

• Factors to consider
 – Effectiveness
 – Impacts on patient QOL
 – Latency of effect
 – Risk of complications (hypopit)

• Cost GK in Aus - $10-15k (lifetime)
 – Once off treatment

• Cost octreotide/lanreotide

SRS and interaction with medical therapy

- Consistent across series

- Cushings – temporary cessation of ketoconazole halves the time to achieve endocrine remission

- Acromegaly – reduced rate of endocrine remission in patients on somatostatin analogues during SRS

- Confounder – disease status

- Practical guide
 - cease 6-8 weeks prior
 - recommence 1-4 weeks after.
SRS for Functioning Pituitary Adenomas – Prolactinomas

- Uncommon limited data

- Limited to non-responders Dopamine agonists (rare) or intolerant of side effects

- Unable to have surgery or dural/cavernous sinus invasion

- Endocrine remission (normal prolactin off DA)
 - 50%

- Tumour control > 90%

- DA at time of SRS – tended to decrease endocrine remission

Imaging - Use of DCE Pituitary Scans
Acromegaly case – Experienced Neuroradiol.
Imaging – 3T MRI

• Superior for cavernous sinus invasion
 – Surgical planning
 – Implications for SRS

• May explain why early series of SRS showed LC 85-90%.

• Visualisation of optic structures

• May pick up microadenoma in Cushings

SRS retreat previous FSRT

- Safe and effective for both functioning and NFPA
- Very effective to control tumour mass (> 75%)
- 72% patients were panhypopituitary
- 42% of the remainder have developed new anterior pituitary hormone deficiencies
- No other late sequelae

- Repeat SRS
 - CN in cavernous sinus
 - Trigeminal neuralgia
New Pituitary dysfunction after Radiotherapy

• Most significant effect post SRS
• Can often be delayed – 2-3 years post treatment
• NO known safe dose to pituitary or stalk
• After SRS NFPA – 20-30%
• After SRS functioning >50%
• NO patients were panhypopituitary
• DI – 2% risk

NAGKS – 512 patients
Other sequelae after Radiotherapy (SRS)

- **OPTIC NEUROPATHY**
 - Dose of optic nerve and chiasm
 - Occurs within 2 years
 - Appropriate patient selection
 - NFPA – 1-2mm gap
 - Functioning – 2-3mm gap
 - Dose selection
 - < 10Gy (1% or less)
 - < 12Gy (< 5%)
 - 12-15Gy (>10%)
 - Risk higher if retreat

- **OTHER CRANIAL NERVE DYSFUNCTION**
 - CN III, IV, V and VI in cav sinus
 - Diplopia
 - 1-2% NFPA
 - 5% in functioning
 - 10% in retreat
 - Facial numbness or pain
 - 1-2%
 - > 50% respond if have facial pain
Other sequelae after Radiotherapy

• **RISK CVA**
 - Early fractionated (FSRT) data
 - 2-3 times increased risk
 - Multiple factors account
 - Length and volume of carotid treated
 - SRS – cases of acute infarction

• **IMPACT ON OVERALL MORTALITY**
 - Risk of second malignancy or malignant tranformation
 - Estimated 1:2000-2500
 - NO convincing evidence that FSRT or SRS increase mortality

Other sequelae after Radiotherapy

• **NEUROCOGNITIVE**

 - Dose to medial temporal lobes
 - RT was independently associated with an impairment on verbal memory and executive function

Future considerations – pituitary radiotherapy

• Individualised treatment based on tumour histology/genetics

• Atypical/aggressive pituitary adenomas (upfront)
 • FSRT with radiosensitisers – TMZ

• ? Charged particles – Protons

• Medical imaging and targeting residual disease
 • DOTATATE-PET - MRI